期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2019
卷号:10
期号:5
页码:214-220
DOI:10.14569/IJACSA.2019.0100528
出版社:Science and Information Society (SAI)
摘要:There are various mathematical optimization problems that can be effectively solved by meta-heuristic algorithms. The improvement of these algorithms is that they carry out iterative search processes which resourcefully act upon exploration and exploitation in spatial domain containing global and local optima. An innovative robust Cuckoo Optimization Algorithm (COA) with adaptive thresholding is proposed to solve the problem of detection and estimation of surface defects on metal coating surfaces. The proposed method is developed through implementing changes to COA and improved the performance. For improving capability of local search as well to keep the global search effect, the enhanced methods such as level set is associated with the proposed method. Also, the method adapts dynamic step size, adaptively changing with the search process for improving the rate of convergence and the ability of local search. The algorithm performance is scrutinized from the experimental analysis and results. Also, the segmentation effectiveness is further enhanced by adapting suitable methods for preprocessing and post processing. The comparison and analysis of the results accomplished with the proposed method and results of earlier methods shows superior performance of the proposed method.