期刊名称:Oriental Journal of Computer Science and Technology
印刷版ISSN:0974-6471
出版年度:2017
卷号:10
期号:4
页码:745-754
DOI:10.13005/ojcst/10.04.07
语种:English
出版社:Oriental Scientific Publishing Company
摘要:Data Warehouse design requires a radical rebuilding of tremendous measures of information, frequently of questionable or conflicting quality, drawn from various heterogeneous sources. Data Warehouse configuration assimilates business learning and innovation know-how. The outline of theData Warehouse requires a profound comprehension of the business forms in detail. The principle point of this exploration paper is to contemplate and investigate the transformation model to change over the E-R outlines to Star Schema for developing Data Warehouses. The Dimensional modelling is a logical design technique used for data warehouses. This research paper addresses various potential differences between the two techniques and highlights the advantages of using dimensional modelling along with disadvantages as well. Dimensional Modelling is one of the popular techniques for databases that are designed keeping in mind the queries from end-user in a data warehouse. In this paper the focus has been on Star Schema, which basically comprises of Fact table and Dimension tables. Each fact table further comprises of foreign keys of various dimensions and measures and degenerate dimensions if any. We also discuss the possibilities of deployment and acceptance of Conversion Model (CM) to provide the details of fact table and dimension tables according to the local needs. It will also highlight to why dimensional modelling is preferred over E-R modelling when creating data warehouse.