摘要:A developed mathematical model of a gas turbine power plant with an additional air bottoming cycle to utilize heat of exhaust gases was used to carry out a technical and economic analysis. The approach used in the study is aimed at solving two types of optimization problems: (1) to determine the maximum net efficiency of the power plant and (2) to adjust the equipment and operating parameters for achieving minimum costs of electricity production. The study shows that the air bottoming cycle provides an increase in the net efficiency up to 44 - 48% and adds about 20% to the installed power capacity. The minimum costs of electric energy production estimated for different prices of fuel (natural gas) are competitive enough, so the gas turbine power plant with air bottoming cycle seems to be a promising technology for medium-power generation.
其他摘要:A developed mathematical model of a gas turbine power plant with an additional air bottoming cycle to utilize heat of exhaust gases was used to carry out a technical and economic analysis. The approach used in the study is aimed at solving two types of optimization problems: (1) to determine the maximum net efficiency of the power plant and (2) to adjust the equipment and operating parameters for achieving minimum costs of electricity production. The study shows that the air bottoming cycle provides an increase in the net efficiency up to 44 - 48% and adds about 20% to the installed power capacity. The minimum costs of electric energy production estimated for different prices of fuel (natural gas) are competitive enough, so the gas turbine power plant with air bottoming cycle seems to be a promising technology for medium-power generation.