首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Building Dynamic Lexicons for Sentiment Analysis
  • 本地全文:下载
  • 作者:Nicolás Mechulam ; Damián Salvia ; Aiala Rosá
  • 期刊名称:Inteligencia Artificial : Ibero-American Journal of Artificial Intelligence
  • 印刷版ISSN:1137-3601
  • 电子版ISSN:1988-3064
  • 出版年度:2019
  • 卷号:22
  • 期号:64
  • 页码:1-13
  • DOI:10.4114/intartif.vol22iss64pp1-13
  • 出版社:Spanish Association for Intelligence Artificial
  • 摘要:Nowadays, many approaches for Sentiment Analysis (SA) rely on affective lexicons to identify emotions transmitted in opinions. However, most of these lexicons do not consider that a word can express different sentiments in different predication domains, introducing errors in the sentiment inference. Due to this problem, we present a model based on a context-graph which can be used for building domain specic sentiment lexicons (DL: Dynamic Lexicons) by propagating the valence of a few seed words. For different corpora, we compare the results of a simple rule-based sentiment classier using the corresponding DL, with the results obtained using a general affective lexicon. For most corpora containing specic domain opinions, the DL reaches better results than the general lexicon.
  • 关键词:Lexicon Induction; Sentiment Analysis; Natural Language Processing
国家哲学社会科学文献中心版权所有