首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Rapid prediction of NMR spectral properties with quantified uncertainty
  • 本地全文:下载
  • 作者:Eric Jonas ; Stefan Kuhn
  • 期刊名称:Journal of Cheminformatics
  • 印刷版ISSN:1758-2946
  • 电子版ISSN:1758-2946
  • 出版年度:2019
  • 卷号:11
  • 期号:1
  • 页码:1-7
  • DOI:10.1186/s13321-019-0374-3
  • 出版社:BioMed Central
  • 摘要:Accurate calculation of specific spectral properties for NMR is an important step for molecular structure elucidation. Here we report the development of a novel machine learning technique for accurately predicting chemical shifts of both $${^1\mathrm{H}}$$ and $${^{13}\mathrm{C}}$$ nuclei which exceeds DFT-accessible accuracy for $${^{13}\mathrm{C}}$$ and $${^1\mathrm{H}}$$ for a subset of nuclei, while being orders of magnitude more performant. Our method produces estimates of uncertainty, allowing for robust and confident predictions, and suggests future avenues for improved performance.
  • 关键词:NMR; Machine learning; DFT
国家哲学社会科学文献中心版权所有