首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Frustration and folding of a TIM barrel protein
  • 本地全文:下载
  • 作者:Kevin T. Halloran ; Kevin T. Halloran ; Yanming Wang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:33
  • 页码:16378-16383
  • DOI:10.1073/pnas.1900880116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Triosephosphate isomerase (TIM) barrel proteins have not only a conserved architecture that supports a myriad of enzymatic functions, but also a conserved folding mechanism that involves on- and off-pathway intermediates. Although experiments have proven to be invaluable in defining the folding free-energy surface, they provide only a limited understanding of the structures of the partially folded states that appear during folding. Coarse-grained simulations employing native centric models are capable of sampling the entire energy landscape of TIM barrels and offer the possibility of a molecular-level understanding of the readout from sequence to structure. We have combined sequence-sensitive native centric simulations with small-angle X-ray scattering and time-resolved Förster resonance energy transfer to monitor the formation of structure in an intermediate in the Sulfolobus solfataricus indole-3-glycerol phosphate synthase TIM barrel that appears within 50 μs and must at least partially unfold to achieve productive folding. Simulations reveal the presence of a major and 2 minor folding channels not detected in experiments. Frustration in folding, i.e., backtracking in native contacts, is observed in the major channel at the initial stage of folding, as well as late in folding in a minor channel before the appearance of the native conformation. Similarities in global and pairwise dimensions of the early intermediate, the formation of structure in the central region that spreads progressively toward each terminus, and a similar rate-limiting step in the closing of the β-barrel underscore the value of combining simulation and experiment to unravel complex folding mechanisms at the molecular level.
  • 关键词:protein-folding intermediates ; Gō models ; TIM barrel protein
国家哲学社会科学文献中心版权所有