期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:26
页码:12627-12628
DOI:10.1073/pnas.1900481116
出版社:The National Academy of Sciences of the United States of America
摘要:The ability of vertebrates to occupy diverse niches has been linked to the spectral properties of rhodopsin, conferring rod-based vision in low-light conditions. More recent insights have come from nonspectral kinetics, including the retinal release rate of the active state of rhodopsin, a key aspect of scotopic vision that shows strong associations with light environments in diverse taxa. We examined the retinal release rates in resurrected proteins across early vertebrates and show that the earliest forms were characterized by much faster rates of retinal release than more recent ancestors. We also show that scotopic vision at the origin of tetrapods is a derived state that arose via at least 4 major shifts in retinal release rate. Our results suggest that early rhodopsin had a function intermediate to that of modern rod and cone pigments and that its well-developed adaptation to low light is a relatively recent innovation since the origin of tetrapods.
关键词:rhodopsin ; metarhodopsin II ; vertebrates ; evolution