首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Real-Time Freeway Traffic State Estimation Based on the Second-Order Divided Difference Kalman Filter
  • 本地全文:下载
  • 作者:Asmâa Ouessai ; Mokhtar Keche
  • 期刊名称:Transport and Telecommunication Journal
  • 印刷版ISSN:1407-6160
  • 电子版ISSN:1407-6179
  • 出版年度:2019
  • 卷号:20
  • 期号:2
  • 页码:114-122
  • DOI:10.2478/ttj-2019-0010
  • 出版社:Walter de Gruyter GmbH
  • 摘要:Reliable road traffic state identification systems should be designed to provide accurate traffic state information anywhere and anytime. In this paper we propose a road traffic classification system, based on traffic variables estimated using the second order Divided Difference Kalman Filter (DDKF2). This filter is compared with the Extended Kalman Filter (EKF) using both simulated and real-world dataset of highway traffic. Monte-Carlo simulations indicate that the DDKF2 outperforms the EKF filter in terms of parameters estimation error. The real-word evaluation of the DDKF2 filter in terms of classification rate confirms that this filter is promising for real-world traffic state identification systems.
  • 关键词:Divided Difference Kalman filter ; Extended Kalman filter ; road traffic estimation ; road traffic classification ; support vector machine
国家哲学社会科学文献中心版权所有