期刊名称:International Journal of Antennas and Propagation
印刷版ISSN:1687-5869
电子版ISSN:1687-5877
出版年度:2019
卷号:2019
页码:1-12
DOI:10.1155/2019/5043028
出版社:Hindawi Publishing Corporation
摘要:Ground penetrating radar (GPR), as a kind of fast, effective, and nondestructive tool, has been widely applied to nondestructive testing of road quality. The finite-difference time-domain method (FDTD) is the common numerical method studying the GPR wave propagation law in layered structure. However, the numerical accuracy and computational efficiency are not high because of the Courant-Friedrichs-Lewy (CFL) stability condition. In order to improve the accuracy and efficiency of FDTD simulation model, a parallel conformal FDTD algorithm based on graphics processor unit (GPU) acceleration technology and surface conformal technique was developed. The numerical simulation results showed that CUDA-implemented conformal FDTD method could greatly reduce computational time and the pseudo-waves generated by the ladder approximation. And the efficiency and accuracy of the proposed method are higher than the traditional FDTD method in simulating GPR wave propagation in two-dimensional (2D) complex underground structures.