In this paper, we propose new families of generalized Lomax distributions named T-LomaxfYg. Using the methodology of the Transformed-Transformer, known as T-X framework, the T-Lomax families introduced are arising from the quantile functions of exponential, Weibull, log-logistic, logistic, Cauchy and extreme value distributions. Various structural properties of the new families are derived including moments, modes and Shannon entropies. Several new generalized Lomax distributions are studied. The shapes of these T-LomaxfYg distributions are very flexible and can be symmetric, skewed to the right, skewed to the left, or bimodal. The method of maximum likelihood is proposed for estimating the distributions parameters and a simulation study is carried out to assess its performance. Four applications of real data sets are used to demonstrate the flexibility of T-LomaxfYg family of distributions in fitting unimodal and bimodal data sets from di erent disciplines.