摘要:The paper presents the results of investigation of acoustic anisotropy in industrial alloy made of steel 14HGNDC after hydrogen-induced cracking (HIC) tests according to the standard NACE TM0284-2003. It was found that location and parameters of corrosion cracks with size about 20 microns can be determined by distribution and value of acoustic anisotropy. A quantitative relationship between value of acoustic anisotropy and size of corrosion cracks in the range from 60 to 6600 microns was established. The obtained results have a great importance for improving methods of hydrogen-induced cracking tests and for non-destructive testing of brittle destruction of structures in oil and gas industry by using the acoustodamage method.
其他摘要:The paper presents the results of investigation of acoustic anisotropy in industrial alloy made of steel 14HGNDC after hydrogen-induced cracking (HIC) tests according to the standard NACE TM0284-2003. It was found that location and parameters of corrosion cracks with size about 20 microns can be determined by distribution and value of acoustic anisotropy. A quantitative relationship between value of acoustic anisotropy and size of corrosion cracks in the range from 60 to 6600 microns was established. The obtained results have a great importance for improving methods of hydrogen-induced cracking tests and for non-destructive testing of brittle destruction of structures in oil and gas industry by using the acoustodamage method.