首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multi-objective Parameters Optimization for HEV Based on improved Particle Swarm Algorithm
  • 本地全文:下载
  • 作者:Ying Ai ; Yuanjie Gao ; dongsheng Liu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:118
  • 页码:1-4
  • DOI:10.1051/e3sconf/201911802005
  • 出版社:EDP Sciences
  • 摘要:Hybrid electric vehicle fuel consumption and emissions are closely related to its energy management strategy. A fuzzy controller of energy management using vehicle torque request and battery state of charge (SOC) as inputs, engine torque as output is designed in this paper foe parallel hybrid electric vehicle. And a multi-objective mathematical function which purpose on maximize fuel economy and minimize emissions is also established, in order to improve the adaptive ability and the control precision of basic fuzzy controller, this paper proposed an improved particle swarm algorithm that based on dynamic learning factor and adaptive inertia weight to optimize the control parameters. Simulation results based on ADVISOR software platform show that the optimized energy management strategy has a better distribution of engine and motor torque, which helps to improved the vehicle’s fuel economy and exhaust emission performance.
  • 其他摘要:Hybrid electric vehicle fuel consumption and emissions are closely related to its energy management strategy. A fuzzy controller of energy management using vehicle torque request and battery state of charge (SOC) as inputs, engine torque as output is designed in this paper foe parallel hybrid electric vehicle. And a multi-objective mathematical function which purpose on maximize fuel economy and minimize emissions is also established, in order to improve the adaptive ability and the control precision of basic fuzzy controller, this paper proposed an improved particle swarm algorithm that based on dynamic learning factor and adaptive inertia weight to optimize the control parameters. Simulation results based on ADVISOR software platform show that the optimized energy management strategy has a better distribution of engine and motor torque, which helps to improved the vehicle’s fuel economy and exhaust emission performance.
国家哲学社会科学文献中心版权所有