首页    期刊浏览 2025年06月14日 星期六
登录注册

文章基本信息

  • 标题:Short-term Load Forecasting Model Considering Meteorological Factors
  • 本地全文:下载
  • 作者:Xi Yunhua ; Zhu Haojun ; Dong Nan
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:118
  • 页码:1-6
  • DOI:10.1051/e3sconf/201911802050
  • 出版社:EDP Sciences
  • 摘要:Because of the limitation of basic data and processing methods, the traditional load characteristic analysis method can not achieve user-level refined prediction. This paper builds a user-level short-term load forecasting model based on algorithms such as decision trees and neural networks in big data technology. Firstly, based on the grey relational analysis method, the influence of meteorological factors on load characteristics is quantitatively analyzed. The key factors are selected as input vectors of decision tree algorithm. This paper builds a category label for each daily load curve after clustering the user’s historical load data. The decision tree algorithm is used to establish classification rules and classify the days to be predicted. Finally, Elman neural network is used to predict the short-term load of a user, and the validity of the model is verified.
  • 其他摘要:Because of the limitation of basic data and processing methods, the traditional load characteristic analysis method can not achieve user-level refined prediction. This paper builds a user-level short-term load forecasting model based on algorithms such as decision trees and neural networks in big data technology. Firstly, based on the grey relational analysis method, the influence of meteorological factors on load characteristics is quantitatively analyzed. The key factors are selected as input vectors of decision tree algorithm. This paper builds a category label for each daily load curve after clustering the user’s historical load data. The decision tree algorithm is used to establish classification rules and classify the days to be predicted. Finally, Elman neural network is used to predict the short-term load of a user, and the validity of the model is verified.
国家哲学社会科学文献中心版权所有