摘要:The study of divergent ultrasonic degradation of methylene blue in water was carried out by exploring the ultrasonic intensity of the methylene blue, the initial concentration and the degradation rate of the solution pH. The test results show that the degradation rate of methylene blue decreases with the increase of ultrasonic power.The initial concentration of methylene blue solution is in the range of 0.00-10.00 mg/L. The degradation rate of methylene blue increases as the concentration of the solution increases. when the concentration is greater than 10.00mg/L, the concentration increases, and the ultrasonic degradation rate decreases. When the pH value is higher, the degradation rate of the methylene blue solution increases with the increase of pH, and the degradation rate reaches a maximum of 77.89%. The region where the ultrasonic degradation of methylene blue occurs is mainly at the junction of gas-liquid two phases, and is degraded by forming hydrogen peroxide in the cavitation bubbles and decomposing into various highly active radicals. Ultrasound has the advantages of fast, low energy consumption and environmental friendliness.
其他摘要:The study of divergent ultrasonic degradation of methylene blue in water was carried out by exploring the ultrasonic intensity of the methylene blue, the initial concentration and the degradation rate of the solution pH. The test results show that the degradation rate of methylene blue decreases with the increase of ultrasonic power.The initial concentration of methylene blue solution is in the range of 0.00-10.00 mg/L. The degradation rate of methylene blue increases as the concentration of the solution increases. when the concentration is greater than 10.00mg/L, the concentration increases, and the ultrasonic degradation rate decreases. When the pH value is higher, the degradation rate of the methylene blue solution increases with the increase of pH, and the degradation rate reaches a maximum of 77.89%. The region where the ultrasonic degradation of methylene blue occurs is mainly at the junction of gas-liquid two phases, and is degraded by forming hydrogen peroxide in the cavitation bubbles and decomposing into various highly active radicals. Ultrasound has the advantages of fast, low energy consumption and environmental friendliness.