首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Effects of Swirling Strength of the Premixed Gas Flow on Pollutant Emission in a Heavy-Duty Gas Turbine
  • 本地全文:下载
  • 作者:Huanhuan Gao ; Zaiguo Fu ; Zhuoxiong Zeng
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:118
  • 页码:1-5
  • DOI:10.1051/e3sconf/201911804038
  • 出版社:EDP Sciences
  • 摘要:The combustion process and pollutant emission of an annular combustion chamber for a heavy-duty gas turbine were investigated by numerical method. The realizable k-ε model and finite rate/eddy dissipation model were adopted for calculations of turbulence and combustion. The effects of different swirling numbers of the double-swirler inlet on the temperature distribution and the thermal NOx formation in the combustion chamber were analyzed. The results show that the change of the swirling number of the outer swirling flow has a greater influence on the generation of the thermal NOx when compared with that of the inner swirling flow. The maximum average temperature of the central cross section of the combustor does not exceed 1760K. The average mass fraction of the generated thermal NOx at the exit decreases with the increasing outer swirling number. When the outer swirling number is less than 0.8, the generation of the thermal NOx is severe at the side wall of the combustion chamber.
  • 其他摘要:The combustion process and pollutant emission of an annular combustion chamber for a heavy-duty gas turbine were investigated by numerical method. The realizable k-ε model and finite rate/eddy dissipation model were adopted for calculations of turbulence and combustion. The effects of different swirling numbers of the double-swirler inlet on the temperature distribution and the thermal NOx formation in the combustion chamber were analyzed. The results show that the change of the swirling number of the outer swirling flow has a greater influence on the generation of the thermal NOx when compared with that of the inner swirling flow. The maximum average temperature of the central cross section of the combustor does not exceed 1760K. The average mass fraction of the generated thermal NOx at the exit decreases with the increasing outer swirling number. When the outer swirling number is less than 0.8, the generation of the thermal NOx is severe at the side wall of the combustion chamber.
国家哲学社会科学文献中心版权所有