首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:The influence of crop dryer operation parameters on the efficiency of energy recovery from extract air
  • 本地全文:下载
  • 作者:Edward Przydróżny ; Aleksandra Przydróżna ; Sylwia Szczęśniak
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:116
  • 页码:1-7
  • DOI:10.1051/e3sconf/201911600064
  • 出版社:EDP Sciences
  • 摘要:Crop drying, especially maize drying, occurs at low external air temperatures, which are lower than the extract air temperature. Therefore, using heat exchangers, to recover thermal energy from the extract air to preheat the cold and dry external air, results in a significant reduction in the primary energy demand for crop drying. The measurements of air parameters in the crop dryer, with a drying capacity of 19 Mg/h of maize, confirm the assumptions undertaken for the production of the heat recovery system. We apply the cross-counter-flow surface heat exchanger system to provide a significant improvement in the efficiency of crop drying. We perform the analysis of the thermal energy recovery system operation. Our results indicate the influence of the drying air set-point and the crop specific humidity on the efficiency of energy recovery from the exhaust air. We performed our measurements at different drying air temperature set-points and different crop relative humidity.
  • 其他摘要:Crop drying, especially maize drying, occurs at low external air temperatures, which are lower than the extract air temperature. Therefore, using heat exchangers, to recover thermal energy from the extract air to preheat the cold and dry external air, results in a significant reduction in the primary energy demand for crop drying. The measurements of air parameters in the crop dryer, with a drying capacity of 19 Mg/h of maize, confirm the assumptions undertaken for the production of the heat recovery system. We apply the cross-counter-flow surface heat exchanger system to provide a significant improvement in the efficiency of crop drying. We perform the analysis of the thermal energy recovery system operation. Our results indicate the influence of the drying air set-point and the crop specific humidity on the efficiency of energy recovery from the exhaust air. We performed our measurements at different drying air temperature set-points and different crop relative humidity.
国家哲学社会科学文献中心版权所有