首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes based on fundamental studies of their oxygen mobility and surface reactivity
  • 本地全文:下载
  • 作者:Vladislav Sadykov ; Ekaterina Sadovskaya ; Nikita Eremeev
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:116
  • 页码:1-9
  • DOI:10.1051/e3sconf/201911600068
  • 出版社:EDP Sciences
  • 摘要:Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes and studying their oxygen transport characteristics are important problems of modern hydrogen energy. In the current work, fundamentals of such materials design based on characterization of their oxygen mobility by oxygen isotope exchange with C18O2 and 18O2 in flow and closed reactors for samples of Ruddlesden – Popper-type oxides Ln2-xCaxNiO4+δ, perovskite-fluorite nanocomposites PrNi0.5Co0.5O3-δ – Ce0.9Y0.1O2-δ, etc. are presented. Fast oxygen transport was demonstrated for PNC – YDC (DO ~10-8 cm2/s at 700°C) nanocomposites due to domination of the fast diffusion channel involving oxygen of the fluorite phase with incorporated Pr cations and developed perovskite-fluorite interfaces. For LnCNO materials a high oxygen mobility (DO ~10-7 cm2/s at 700°C) provided by the cooperative mechanism of its migration was demonstrated. Depending on Ca dopant content and Ln cation nature, in some cases 1–2 additional channels of the slow diffusion appear due to decreasing the interstitial oxygen content and increasing the energy barrier for oxygen jumps due to cationic size effect. Optimized by the chemical composition and nanodomain structure materials of these types demonstrated a high performance as SOFC cathodes and functional layers in asymmetric supported oxygen separation membranes.
  • 其他摘要:Design of materials for solid oxide fuel cells cathodes and oxygen separation membranes and studying their oxygen transport characteristics are important problems of modern hydrogen energy. In the current work, fundamentals of such materials design based on characterization of their oxygen mobility by oxygen isotope exchange with C18O2 and 18O2 in flow and closed reactors for samples of Ruddlesden – Popper-type oxides Ln2-xCaxNiO4+δ, perovskite-fluorite nanocomposites PrNi0.5Co0.5O3-δ – Ce0.9Y0.1O2-δ, etc. are presented. Fast oxygen transport was demonstrated for PNC – YDC ( DO ~10-8 cm2/s at 700°C) nanocomposites due to domination of the fast diffusion channel involving oxygen of the fluorite phase with incorporated Pr cations and developed perovskite-fluorite interfaces. For LnCNO materials a high oxygen mobility ( DO ~10-7 cm2/s at 700°C) provided by the cooperative mechanism of its migration was demonstrated. Depending on Ca dopant content and Ln cation nature, in some cases 1–2 additional channels of the slow diffusion appear due to decreasing the interstitial oxygen content and increasing the energy barrier for oxygen jumps due to cationic size effect. Optimized by the chemical composition and nanodomain structure materials of these types demonstrated a high performance as SOFC cathodes and functional layers in asymmetric supported oxygen separation membranes.
国家哲学社会科学文献中心版权所有