首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping
  • 本地全文:下载
  • 作者:Xiaoxuan Zhang ; Xiaoxuan Zhang ; Lingyu Sun
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:42
  • 页码:20863-20868
  • DOI:10.1073/pnas.1912467116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Droplet manipulation is playing an important role in various fields, including scientific research, industrial production, and daily life. Here, inspired by the microstructures and functions of Namib desert beetles, Nepenthes pitcher plants, and emergent aquatic plants, we present a multibioinspired slippery surface for droplet manipulation by employing combined strategies of bottom-up colloidal self-assembly, top-down photolithography, and microstructured mold replication. The resultant multilayered hierarchical wettability surface consists of hollow hydrogel bump arrays and a lubricant-infused inverse opal film as the substrate. Based on capillary force, together with slippery properties of the substrate and wettability of the bump arrays, water droplets from all directions can be attracted to the bumps and be collected through hollow channels to a reservoir. Independent of extra energy input, droplet condensation, or coalescence, these surfaces have shown ideal droplet pumping and water collection efficiency. In particular, these slippery surfaces also exhibit remarkable features including versatility, generalization, and recyclability in practical use such as small droplet collection, which make them promising candidates for a wide range of applications..
  • 关键词:bioinspired ; slippery surface ; wettability ; droplet ; colloidal crystal
国家哲学社会科学文献中心版权所有