期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:41
页码:20360-20365
DOI:10.1073/pnas.1900219116
出版社:The National Academy of Sciences of the United States of America
摘要:The lack of large-scale, continuously evolving empirical data usually limits the study of networks to the analysis of snapshots in time. This approach has been used for verification of network evolution mechanisms, such as preferential attachment. However, these studies are mostly restricted to the analysis of the first links established by a new node in the network and typically ignore connections made after each node’s initial introduction. Here, we show that the subsequent actions of individuals, such as their second network link, are not random and can be decoupled from the mechanism behind the first network link. We show that this feature has strong influence on the network topology. Moreover, snapshots in time can now provide information on the mechanism used to establish the second connection. We interpret these empirical results by introducing the “propinquity model,” in which we control and vary the distance of the second link established by a new node and find that this can lead to networks with tunable density scaling, as found in real networks. Our work shows that sociologically meaningful mechanisms are influencing network evolution and provides indications of the importance of measuring the distance between successive connections..
关键词:network generation methods ; network density ; network evolution