首页    期刊浏览 2025年04月13日 星期日
登录注册

文章基本信息

  • 标题:Single-molecule localization microscopy as nonlinear inverse problem
  • 本地全文:下载
  • 作者:Ji Yu ; Ji Yu ; Ahmed Elmokadem
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:41
  • 页码:20438-20445
  • DOI:10.1073/pnas.1912634116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We present a statistical framework to model the spatial distribution of molecules based on a single-molecule localization microscopy (SMLM) dataset. The latter consists of a collection of spatial coordinates and their associated uncertainties. We describe iterative parameter-estimation algorithms based on this framework, as well as a sampling algorithm to numerically evaluate the complete posterior distribution. We demonstrate that the inverse computation can be viewed as a type of image restoration process similar to the classical image deconvolution methods, except that it is performed on SMLM images. We further discuss an application of our statistical framework in the task of particle fusion using SMLM data. We show that the fusion algorithm based on our model outperforms the current state-of-the-art in terms of both accuracy and computational cost..
  • 关键词:superresolution microscopy ; single;molecule localization ; statistical modeling ; particle fusion
国家哲学社会科学文献中心版权所有