期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:40
页码:20115-20123
DOI:10.1073/pnas.1903968116
出版社:The National Academy of Sciences of the United States of America
摘要:Recent studies have shown that RNA polymerase (RNAP) is organized into distinct clusters in Escherichia coli and Bacillus subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer insights into unique functions and regulations. It has been proposed that the formation of RNAP clusters is driven by active ribosomal RNA (rRNA) transcription and that RNAP clusters function as factories for highly efficient transcription. In this work, we examined these hypotheses by investigating the spatial organization and transcription activity of RNAP in E. coli cells using quantitative superresolution imaging coupled with genetic and biochemical assays. We observed that RNAP formed distinct clusters that were engaged in active rRNA synthesis under a rich medium growth condition. Surprisingly, a large fraction of RNAP clusters persisted in the absence of high rRNA transcription activities or when the housekeeping σ 70 was sequestered, and was only significantly diminished when all RNA transcription was inhibited globally. In contrast, the cellular distribution of RNAP closely followed the morphology of the underlying nucleoid under all conditions tested irrespective of the corresponding transcription activity, and RNAP redistributed into dispersed, smaller clusters when the supercoiling state of the nucleoid was perturbed. These results suggest that RNAP was organized into active transcription centers under the rich medium growth condition; its spatial arrangement at the cellular level, however, was not dependent on rRNA synthesis activity and was likely organized by the underlying nucleoid..