期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:40
页码:19848-19856
DOI:10.1073/pnas.1821378116
出版社:The National Academy of Sciences of the United States of America
摘要:We present a machine learning-based method for tomographic reconstruction of dense layered objects, with range of projection angles limited to ± 10 ○ . Whereas previous approaches to phase tomography generally require 2 steps, first to retrieve phase projections from intensity projections and then to perform tomographic reconstruction on the retrieved phase projections, in our work a physics-informed preprocessor followed by a deep neural network (DNN) conduct the 3-dimensional reconstruction directly from the intensity projections. We demonstrate this single-step method experimentally in the visible optical domain on a scaled-up integrated circuit phantom. We show that even under conditions of highly attenuated photon fluxes a DNN trained only on synthetic data can be used to successfully reconstruct physical samples disjoint from the synthetic training set. Thus, the need for producing a large number of physical examples for training is ameliorated. The method is generally applicable to tomography with electromagnetic or other types of radiation at all bands.
关键词:deep learning ; tomography ; imaging through scattering media