期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:35
页码:17409-17418
DOI:10.1073/pnas.1904125116
出版社:The National Academy of Sciences of the United States of America
摘要:Increasing evidence demonstrates that IL-17A promotes tumorigenesis, metastasis, and viral infection. Natural killer (NK) cells are critical for defending against tumors and infections. However, the roles and mechanisms of IL-17A in regulating NK cell activity remain elusive. Herein, our study demonstrated that IL-17A constrained NK cell antitumor and antiviral activity by restraining NK cell maturation. It was observed that the development and metastasis of tumors were suppressed in IL-17A–deficient mice in the NK cell-dependent manner. In addition, the antiviral activity of NK cells was also improved in IL-17A–deficient mice. Mechanistically, ablation of IL-17A signaling promoted generation of terminally mature CD27 − CD11b + NK cells, whereas constitutive IL-17A signaling reduced terminally mature NK cells. Parabiosis or mixed bone marrow chimeras from Il17a −/− and wild-type (WT) mice could inhibit excessive generation of terminally mature NK cells induced by IL-17A deficiency. Furthermore, IL-17A desensitized NK cell responses to IL-15 and suppressed IL-15–induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) via up-regulation of SOCS3, leading to down-regulation of Blimp-1. Therefore, IL-17A acts as the checkpoint during NK cell terminal maturation, which highlights potential interventions to defend against tumors and viral infections..