首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:The Complexity of Symmetry Breaking in Massive Graphs
  • 本地全文:下载
  • 作者:Christian Konrad ; Sriram V. Pemmaraju ; Talal Riaz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:146
  • 页码:1-18
  • DOI:10.4230/LIPIcs.DISC.2019.26
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The goal of this paper is to understand the complexity of symmetry breaking problems, specifically maximal independent set (MIS) and the closely related beta-ruling set problem, in two computational models suited for large-scale graph processing, namely the k-machine model and the graph streaming model. We present a number of results. For MIS in the k-machine model, we improve the O~(m/k^2 + Delta/k)-round upper bound of Klauck et al. (SODA 2015) by presenting an O~(m/k^2)-round algorithm. We also present an Omega~(n/k^2) round lower bound for MIS, the first lower bound for a symmetry breaking problem in the k-machine model. For beta-ruling sets, we use hierarchical sampling to obtain more efficient algorithms in the k-machine model and also in the graph streaming model. More specifically, we obtain a k-machine algorithm that runs in O~(beta n Delta^{1/beta}/k^2) rounds and, by using a similar hierarchical sampling technique, we obtain one-pass algorithms for both insertion-only and insertion-deletion streams that use O(beta * n^{1+1/2^{beta-1}}) space. The latter result establishes a clear separation between MIS, which is known to require Omega(n^2) space (Cormode et al., ICALP 2019), and beta-ruling sets, even for beta = 2. Finally, we present an even faster 2-ruling set algorithm in the k-machine model, one that runs in O~(n/k^{2-epsilon} + k^{1-epsilon}) rounds for any epsilon, 0 <=epsilon <=1. For a wide range of values of k this round complexity simplifies to O~(n/k^2) rounds, which we conjecture is optimal. Our results use a variety of techniques. For our upper bounds, we prove and use simulation theorems for beeping algorithms, hierarchical sampling, and L_0-sampling, whereas for our lower bounds we use information-theoretic arguments and reductions to 2-party communication complexity problems.
  • 关键词:communication complexity; information theory; k-machine model; maximal independent set; ruling set; streaming algorithms
国家哲学社会科学文献中心版权所有