摘要:Consider a variant of the Mastermind game in which queries are l_p distances, rather than the usual Hamming distance. That is, a codemaker chooses a hidden vector y in {-k,-k+1,...,k-1,k}^n and answers to queries of the form y-x _p where x in {-k,-k+1,...,k-1,k}^n. The goal is to minimize the number of queries made in order to correctly guess y. In this work, we show an upper bound of O(min{n,(n log k)/(log n)}) queries for any real 1<=p0. Thus, essentially any approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors. Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker answers queries with any q = (1 +/- epsilon) y-x _p, there is no query efficient algorithm.