首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Tracking the l_2 Norm with Constant Update Time
  • 本地全文:下载
  • 作者:Chi-Ning Chou ; Zhixian Lei ; Preetum Nakkiran
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-15
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.2
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The l_2 tracking problem is the task of obtaining a streaming algorithm that, given access to a stream of items a_1,a_2,a_3,... from a universe [n], outputs at each time t an estimate to the l_2 norm of the frequency vector f^{(t)}in R^n (where f^{(t)}_i is the number of occurrences of item i in the stream up to time t). The previous work [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff, PODS 2017] gave a streaming algorithm with (the optimal) space using O(epsilon^{-2}log(1/delta)) words and O(epsilon^{-2}log(1/delta)) update time to obtain an epsilon-accurate estimate with probability at least 1-delta. We give the first algorithm that achieves update time of O(log 1/delta) which is independent of the accuracy parameter epsilon, together with the nearly optimal space using O(epsilon^{-2}log(1/delta)) words. Our algorithm is obtained using the Count Sketch of [Charilkar-Chen-Farach-Colton, ICALP 2002].
  • 关键词:Streaming algorithms; Sketching algorithms; Tracking; CountSketch
国家哲学社会科学文献中心版权所有