首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Improved Algorithms for Time Decay Streams
  • 本地全文:下载
  • 作者:Vladimir Braverman ; Harry Lang ; Enayat Ullah
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-17
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.27
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the time-decay model for data streams, elements of an underlying data set arrive sequentially with the recently arrived elements being more important. A common approach for handling large data sets is to maintain a coreset, a succinct summary of the processed data that allows approximate recovery of a predetermined query. We provide a general framework that takes any offline-coreset and gives a time-decay coreset for polynomial time decay functions. We also consider the exponential time decay model for k-median clustering, where we provide a constant factor approximation algorithm that utilizes the online facility location algorithm. Our algorithm stores O(k log(h Delta)+h) points where h is the half-life of the decay function and Delta is the aspect ratio of the dataset. Our techniques extend to k-means clustering and M-estimators as well.
  • 关键词:Streaming algorithms; approximation algorithms; facility location and clustering
国家哲学社会科学文献中心版权所有