首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs
  • 本地全文:下载
  • 作者:Michael Anastos ; Alan Frieze
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-10
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let Omega_q=Omega_q(H) denote the set of proper [q]-colorings of the hypergraph H. Let Gamma_q be the graph with vertex set Omega_q where two vertices are adjacent iff the corresponding colorings differ in exactly one vertex. We show that if H=H_{n,m;k}, k >= 2, the random k-uniform hypergraph with V=[n] and m=dn/k hyperedges then w.h.p. Gamma_q is connected if d is sufficiently large and q >~ (d/log d)^{1/(k-1)}. This is optimal to the first order in d. Furthermore, with a few more colors, we find that the diameter of Gamma_q is O(n) w.h.p, where the hidden constant depends on d. So, with this choice of d,q, the natural Glauber Dynamics Markov Chain on Omega_q is ergodic w.h.p.
  • 关键词:Random Graphs; Colorings; Ergodicity
国家哲学社会科学文献中心版权所有