首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Direct Sum Testing: The General Case
  • 本地全文:下载
  • 作者:Irit Dinur ; Konstantin Golubev
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-11
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.40
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A function f:[n_1] x ... x[n_d]->F_2 is a direct sum if it is of the form f (a_1,...,a_d) = f_1(a_1) oplus ... oplus f_d (a_d), for some d functions f_i:[n_i]->F_2 for all i=1,..., d, and where n_1,...,n_d in N. We present a 4-query test which distinguishes between direct sums and functions that are far from them. The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on the direct product test constructed by Dinur & Steurer (2014). We also present a different test, which queries the function (d+1) times, but is easier to analyze. In multiplicative +/- 1 notation, this reads as follows. A d-dimensional tensor with +/- 1 entries is called a tensor product if it is a tensor product of d vectors with +/- 1 entries, or equivalently, if it is of rank 1. The presented tests can be read as tests for distinguishing between tensor products and tensors that are far from being tensor products.
  • 关键词:property testing; direct sum; tensor product
国家哲学社会科学文献中心版权所有