首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
  • 本地全文:下载
  • 作者:Zongchen Chen ; Santosh S. Vempala
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-12
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.64
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density proportional to e^{-f} where f:R^d -> R is mu-strongly convex and L-smooth (the condition number is kappa = L/mu). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(kappa), improving on the previous best bound of O(kappa^{1.5}); we complement this with an example where the relaxation time is Omega(kappa). When implemented using a nearly optimal ODE solver, HMC returns an epsilon-approximate point in 2-Wasserstein distance using O~((kappa d)^{0.5} epsilon^{-1}) gradient evaluations per step and O~((kappa d)^{1.5}epsilon^{-1}) total time.
  • 关键词:logconcave distribution; sampling; Hamiltonian Monte Carlo; spectral gap; strong convexity
国家哲学社会科学文献中心版权所有