首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Thresholds in Random Motif Graphs
  • 本地全文:下载
  • 作者:Michael Anastos ; Peleg Michaeli ; Samantha Petti
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-19
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.66
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce a natural generalization of the Erdös-Rényi random graph model in which random instances of a fixed motif are added independently. The binomial random motif graph G(H,n,p) is the random (multi)graph obtained by adding an instance of a fixed graph H on each of the copies of H in the complete graph on n vertices, independently with probability p. We establish that every monotone property has a threshold in this model, and determine the thresholds for connectivity, Hamiltonicity, the existence of a perfect matching, and subgraph appearance. Moreover, in the first three cases we give the analogous hitting time results; with high probability, the first graph in the random motif graph process that has minimum degree one (or two) is connected and contains a perfect matching (or Hamiltonian respectively).
  • 关键词:Random graph; Connectivity; Hamiltonicty; Small subgraphs
国家哲学社会科学文献中心版权所有