首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Random-Cluster Dynamics in Z^2: Rapid Mixing with General Boundary Conditions
  • 本地全文:下载
  • 作者:Antonio Blanca ; Reza Gheissari ; Eric Vigoda
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:145
  • 页码:1-19
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2019.67
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The random-cluster (FK) model is a key tool for the study of phase transitions and for the design of efficient Markov chain Monte Carlo (MCMC) sampling algorithms for the Ising/Potts model. It is well-known that in the high-temperature region beta1 and p != p_c(q) the mixing time of the FK-dynamics is polynomial in n for every realizable boundary condition. Previously, for boundary conditions that do not carry long-range information (namely wired and free), Blanca and Sinclair (2017) had proved that the FK-dynamics in the same setting mixes in optimal O(n^2 log n) time. To illustrate the difficulties introduced by general boundary conditions, we also construct a class of non-realizable boundary conditions that induce slow (stretched-exponential) convergence at high temperatures.
  • 关键词:Markov chain; mixing time; random-cluster model; Glauber dynamics; spatial mixing
国家哲学社会科学文献中心版权所有