首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem
  • 本地全文:下载
  • 作者:Huan Li ; He Sun ; Luca Zanetti
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:144
  • 页码:1-14
  • DOI:10.4230/LIPIcs.ESA.2019.71
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study spectral approaches for the MAX-2-LIN(k) problem, in which we are given a system of m linear equations of the form x_i - x_j is equivalent to c_{ij} mod k, and required to find an assignment to the n variables {x_i} that maximises the total number of satisfied equations. We consider Hermitian Laplacians related to this problem, and prove a Cheeger inequality that relates the smallest eigenvalue of a Hermitian Laplacian to the maximum number of satisfied equations of a MAX-2-LIN(k) instance I. We develop an O~(kn^2) time algorithm that, for any (1-epsilon)-satisfiable instance, produces an assignment satisfying a (1 - O(k)sqrt{epsilon})-fraction of equations. We also present a subquadratic-time algorithm that, when the graph associated with I is an expander, produces an assignment satisfying a (1- O(k^2)epsilon)-fraction of the equations. Our Cheeger inequality and first algorithm can be seen as generalisations of the Cheeger inequality and algorithm for MAX-CUT developed by Trevisan.
  • 关键词:Spectral methods; Hermitian Laplacians; the Max-2-Lin problem; Unique Games
国家哲学社会科学文献中心版权所有