首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Equal-Subset-Sum Faster Than the Meet-in-the-Middle
  • 本地全文:下载
  • 作者:Marcin Mucha ; Jesper Nederlof ; Jakub Pawlewicz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:144
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ESA.2019.73
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the Equal-Subset-Sum problem, we are given a set S of n integers and the problem is to decide if there exist two disjoint nonempty subsets A,B subseteq S, whose elements sum up to the same value. The problem is NP-complete. The state-of-the-art algorithm runs in O^*(3^(n/2)) <= O^*(1.7321^n) time and is based on the meet-in-the-middle technique. In this paper, we improve upon this algorithm and give O^*(1.7088^n) worst case Monte Carlo algorithm. This answers a question suggested by Woeginger in his inspirational survey. Additionally, we analyse the polynomial space algorithm for Equal-Subset-Sum. A naive polynomial space algorithm for Equal-Subset-Sum runs in O^*(3^n) time. With read-only access to the exponentially many random bits, we show a randomized algorithm running in O^*(2.6817^n) time and polynomial space.
  • 关键词:Equal-Subset-Sum; Subset-Sum; meet-in-the-middle; enumeration technique; randomized algorithm
国家哲学社会科学文献中心版权所有