首页    期刊浏览 2025年04月17日 星期四
登录注册

文章基本信息

  • 标题:Complete Non-Orders and Fixed Points
  • 本地全文:下载
  • 作者:Akihisa Yamada ; Jrmy Dubut
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:141
  • 页码:1-16
  • DOI:10.4230/LIPIcs.ITP.2019.30
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various completeness conditions and fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often without any property of ordering, thus complete non-orders. In particular, we generalize the Knaster - Tarski theorem so that we ensure the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that the set of quasi-fixed points is complete under a mild condition - attractivity - which is implied by either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and Maaden. Finally, we recover Kleene's fixed-point theorem for omega-complete non-orders, again using attractivity to prove that Kleene's fixed points are least quasi-fixed points.
  • 关键词:Order Theory; Lattice Theory; Fixed-Points; Isabelle/HOL
国家哲学社会科学文献中心版权所有