首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:Speaker Diarization
  • 本地全文:下载
  • 作者:Vantini, Lucia ; Agostini, Siegrid ; Diotto, Caterina
  • 期刊名称:International Journal of Computer Trends and Technology
  • 电子版ISSN:2231-2803
  • 出版年度:2019
  • 卷号:67
  • 期号:9
  • 页码:50-54
  • DOI:10.14445/22312803/IJCTT-V67I9P110
  • 出版社:Seventh Sense Research Group
  • 摘要:Speaker Diarization is the task of determining ‘who spoke when?’.Speaker Diarization uses unsupervised as well as supervised approaches to detect the change of speaker in the temporal dimension. This paper primarily describes the implementation of Speaker Diarization using Neural Networks (a supervised method). First a summary of the clustering algorithms is given. Then the three approaches using neural networks is specified. They are Speaker Diarization using Artificial Neural Networks, Recurrent Neural Networks and Adaptive Long Short Term Memory or Multiple LSTMs. Finally the accuracy is calculated and the results are compared.
  • 关键词:Artificial Neural Network; Recurrent Neural Networks; LSTM; MFCC
国家哲学社会科学文献中心版权所有