首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Facial Expressions Recognition in Thermal Images based on Deep Learning Techniques
  • 本地全文:下载
  • 作者:Yomna M. Elbarawy ; Neveen I. Ghali ; Rania Salah El-Sayed
  • 期刊名称:International Journal of Image, Graphics and Signal Processing
  • 印刷版ISSN:2074-9074
  • 电子版ISSN:2074-9082
  • 出版年度:2019
  • 卷号:11
  • 期号:10
  • 页码:1-7
  • DOI:10.5815/ijigsp.2019.10.01
  • 出版社:MECS Publisher
  • 摘要:Facial expressions are undoubtedly the best way to express human attitude which is crucial in social communications. This paper gives attention for exploring the human sentimental state in thermal images through Facial Expression Recognition (FER) by utilizing Convolutional Neural Network (CNN). Most traditional approaches largely depend on feature extraction and classification methods with a big pre-processing level but CNN as a type of deep learning methods, can automatically learn and distinguish influential features from the raw data of images through its own multiple layers. Obtained experimental results over the IRIS database show that the use of CNN architecture has a 96.7% recognition rate which is high compared with Neural Networks (NN), Autoencoder (AE) and other traditional recognition methods as Local Standard Deviation (LSD), Principle Component Analysis (PCA) and K-Nearest Neighbor (KNN).
  • 关键词:Thermal Images; Neural Network; Convolutional Neural Network; Facial Expression Recognition; Autoencoders.
国家哲学社会科学文献中心版权所有