首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Detection of Different Brain Diseases from EEG Signals Using Hidden Markov Model
  • 本地全文:下载
  • 作者:Md. Hasin R. Rabbani ; Sheikh Md. Rabiul Islam
  • 期刊名称:International Journal of Image, Graphics and Signal Processing
  • 印刷版ISSN:2074-9074
  • 电子版ISSN:2074-9082
  • 出版年度:2019
  • 卷号:11
  • 期号:10
  • 页码:16-22
  • DOI:10.5815/ijigsp.2019.10.03
  • 出版社:MECS Publisher
  • 摘要:The brain imaging device, Electroencephalography (EEG) provides several advantages over other brain signals like Functional Near-infrared Spectroscopy (fNIRS) and Functional Magnetic Resonance Imaging (fMRI). It is non-invasive and easily applicable. EEG provides high temporal resolution with a low setup cost. EEG signals of several subjects which record electric potential caused by neurons firing in the brain are undergone a Hidden Markov Model (HMM) classification technique. We are particularly interested to detect the brain diseases from EEG signals by an HMM probabilistic model. This HMM model is built with a given initial probability matrix of five different states, namely, epilepsy, seizure, dementia, stroke and normality. The transition probability matrix is updated after each iteration of parameter estimation using Baum-Welch algorithm (B-W algorithm).
  • 关键词:Electroencephalography (EEG); Hidden Markov Model (HMM); Baum-Welch algorithm (B-W algorithm); Initial probability matrix; Transition probability matrix.
国家哲学社会科学文献中心版权所有