期刊名称:International Journal of Image, Graphics and Signal Processing
印刷版ISSN:2074-9074
电子版ISSN:2074-9082
出版年度:2019
卷号:11
期号:10
页码:16-22
DOI:10.5815/ijigsp.2019.10.03
出版社:MECS Publisher
摘要:The brain imaging device, Electroencephalography (EEG) provides several advantages over other brain signals like Functional Near-infrared Spectroscopy (fNIRS) and Functional Magnetic Resonance Imaging (fMRI). It is non-invasive and easily applicable. EEG provides high temporal resolution with a low setup cost. EEG signals of several subjects which record electric potential caused by neurons firing in the brain are undergone a Hidden Markov Model (HMM) classification technique. We are particularly interested to detect the brain diseases from EEG signals by an HMM probabilistic model. This HMM model is built with a given initial probability matrix of five different states, namely, epilepsy, seizure, dementia, stroke and normality. The transition probability matrix is updated after each iteration of parameter estimation using Baum-Welch algorithm (B-W algorithm).
关键词:Electroencephalography (EEG); Hidden Markov Model (HMM); Baum-Welch algorithm (B-W algorithm); Initial probability matrix; Transition probability matrix.