首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A test on linear hypothesis of $k$-sample means in high-dimensional data
  • 本地全文:下载
  • 作者:Cao, Mingxiang ; Sun, Peng ; He, Daojiang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2020
  • 卷号:13
  • 期号:1
  • 页码:27-36
  • DOI:10.4310/SII.2020.v13.n1.a3
  • 出版社:International Press
  • 摘要:In this paper, a new test procedure is proposed to test a linear hypothesis of $k$-sample mean vectors in high-dimensional normal models with heteroskedasticity. The motivation is on the basis of the generalized likelihood ratio method and the Bennett transformation. The asymptotic distributions of the new test are derived under null and local alternative hypotheses under mild conditions. Simulation results show that the new test can control the nominal level reasonably and has greater power than competing tests in some cases. Moreover, numerical studies illustrate that our proposed test can also be applied to non-normal data..
  • 关键词:high;dimensional data; linear hypothesis; $k$;sample; generalized likelihood ratio method; Bennett transformation
国家哲学社会科学文献中心版权所有