首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Experimental measurement and Numerical Simulation of Particle Deposition on super–hydrophobic surface
  • 本地全文:下载
  • 作者:Anjian Pan ; Lizhi Zhang ; Hao Lu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:128
  • 页码:1-4
  • DOI:10.1051/e3sconf/201912806009
  • 出版社:EDP Sciences
  • 摘要:Airborne dust deposition on a large number of energy devices would cause serious efficiency and lifetime reduction, such as solar photovoltaic panels, heat exchanger surfaces and fan blades. Mechanicalor manual cleaning using water is still the main method of mitigating dust deposition damage on theserelated energy equipment, which is commonly expensive and frequent. As a kind of self-cleaningmaterial,super–hydrophobic coating may become a new effective way to mitigating the dust deposition issue. Super–hydrophobic coatings with low surface energy and unique micro-nano secondary structure can significantly reduce dust deposition rate. However, mechanism of dust deposition on super-hydrophobic surfaces remains unclear. Thus it is difficult to develop high performance self-cleaning coating. This paper aims to investigate dust deposition behaviors and mechanisms on super-hydrophobic surface by experimental measurement and numerical simulation. Lattice Boltzmann Method-Discrete Particle Method (LBM–DPM) will be developed to predict dust particle deposition process including settling, collision adhesion and rebound behaviors. The mechanisms and interactions between coating surface energy, particle characteristics, particle incident velocity and particle adhesion or rebound behavior will be studied carefully. The findings and results may be useful to guide the development of high performance self-cleaning super– hydrophobic coating.
  • 其他摘要:Airborne dust deposition on a large number of energy devices would cause serious efficiency and lifetime reduction, such as solar photovoltaic panels, heat exchanger surfaces and fan blades. Mechanicalor manual cleaning using water is still the main method of mitigating dust deposition damage on theserelated energy equipment, which is commonly expensive and frequent. As a kind of self-cleaningmaterial,super–hydrophobic coating may become a new effective way to mitigating the dust deposition issue. Super–hydrophobic coatings with low surface energy and unique micro-nano secondary structure can significantly reduce dust deposition rate. However, mechanism of dust deposition on super-hydrophobic surfaces remains unclear. Thus it is difficult to develop high performance self-cleaning coating. This paper aims to investigate dust deposition behaviors and mechanisms on super-hydrophobic surface by experimental measurement and numerical simulation. Lattice Boltzmann Method-Discrete Particle Method (LBM–DPM) will be developed to predict dust particle deposition process including settling, collision adhesion and rebound behaviors. The mechanisms and interactions between coating surface energy, particle characteristics, particle incident velocity and particle adhesion or rebound behavior will be studied carefully. The findings and results may be useful to guide the development of high performance self-cleaning super– hydrophobic coating.
国家哲学社会科学文献中心版权所有