摘要:The mixing process is a widespread phenomenon, which plays an essential role among a large number of industrial processes. The effectiveness of mixing depends on the state of mixed phases, temperature, viscosity and density of liquids, mutual solubility of mixed fluids, type of stirrer, a what is the most critical - the shape of the impeller. In the present research, the objective is to analyse the process of the fluid flow in the mechanically agitated vessel with new impeller type. Velocity field values were determined using computer simulation and experimental particle image velocimetry method. The basis for the assessment of the intensity degree and efficiency of mixing was the analysis of velocity vectors distribution and power number. An experimental and numerical study was carried out for various stirred process parameters to determine optimal conditions for the mixing process.
其他摘要:The increase in global energy consumption and the expected exhaustion of traditional energy sources, especially in the last century, led to an increased search for alternative sources of energy. The use of renewable energy sources has become extremely important to reduce dependence on fossil fuels. Due to the stochastic nature of the renewable energy sources such as the wind speed fluctuation and the intensity of solar radiation the stable operation of the systems base single renewable source can be problematic. But the using two or more of these sources results in higher stability than relying on a single source. For this reason, hybrid renewable energy systems have become an attractive solution in the field of renewable energy. A hybrid energy system is a combination of two or more renewable energy sources that can enhance each another to increase the reliability of the supplied energy. The objective of this paper is investigation about the energy supplying improvement and the energy efficiency utilisation by hybridisation using two renewable energy resources: wind energy and solar energy with respect two different optimisation objectives: economical to reduce the net present cost and ecological to reduce CO2 emissions. Presented system has been implemented to supply a single household with an electric load.