首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Personal Care Wastewater Treatment With Electro-coagulation and Electro-oxidation
  • 本地全文:下载
  • 作者:Rachmad Ardhianto ; Arseto Yekti Bagastyo
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:125
  • 页码:1-9
  • DOI:10.1051/e3sconf/201912503008
  • 出版社:EDP Sciences
  • 摘要:Personal care wastewater contains pharmaceuticals and personal care products (PPCPs). The compounds were in organic pollutants which have to be treated before water can be discharged. Electrochemical processes such as electro-coagulation and electro-oxidation were used to remove non-biodegradable in wastewater. Electro-coagulation as pretreatment using aluminum electrodes as anode and cathode. Electro-oxidation using Ti/Pt, and Ti/IrO2 as anode electrodes and variation of current 0,6 A, 0,7 A, 0,8 A and 1,0 A. Aluminum electrodes has effectiveness in removing COD, and TSS in electrocoagulation. Using aluminum electrodes remove COD, and TSS 76.1% (5.41 g) and 90.3% (6.10 g). Under initial pH, aluminum electrode does not cause a change in pH from initial pH (4.8-4.9). The removal efficiency of electrooxidation process using aluminum electrocoagulation effluent COD using Ti/Pt and Ti/IrO2 were 34,30% (1,55 g) and 39,71% (1,80 g). Increasing current when using Ti/IrO2 causes the COD removal rate to be more effective than using Ti/Pt. removal COD with 1.0 A gave the optimum COD removal were 34,30% (2,3 Ah/L; 1,55 g) with Ti/Pt, and 39,71% (2,3 Ah/L; 1,80 g) with Ti/IrO2 compared to 0,6 A (1,4 Ah/L), 0,7 A (1,6 Ah/L), and 0.8 A (1,9 Ah/L).
  • 其他摘要:Personal care wastewater contains pharmaceuticals and personal care products (PPCPs). The compounds were in organic pollutants which have to be treated before water can be discharged. Electrochemical processes such as electro-coagulation and electro-oxidation were used to remove non-biodegradable in wastewater. Electro-coagulation as pretreatment using aluminum electrodes as anode and cathode. Electro-oxidation using Ti/Pt, and Ti/IrO2 as anode electrodes and variation of current 0,6 A, 0,7 A, 0,8 A and 1,0 A. Aluminum electrodes has effectiveness in removing COD, and TSS in electrocoagulation. Using aluminum electrodes remove COD, and TSS 76.1% (5.41 g) and 90.3% (6.10 g). Under initial pH, aluminum electrode does not cause a change in pH from initial pH (4.8-4.9). The removal efficiency of electrooxidation process using aluminum electrocoagulation effluent COD using Ti/Pt and Ti/IrO2 were 34,30% (1,55 g) and 39,71% (1,80 g). Increasing current when using Ti/IrO2 causes the COD removal rate to be more effective than using Ti/Pt. removal COD with 1.0 A gave the optimum COD removal were 34,30% (2,3 Ah/L; 1,55 g) with Ti/Pt, and 39,71% (2,3 Ah/L; 1,80 g) with Ti/IrO2 compared to 0,6 A (1,4 Ah/L), 0,7 A (1,6 Ah/L), and 0.8 A (1,9 Ah/L).
  • 其他关键词:Electro-Coagulation ; Electro-Oxidation ; Electrode ; Personal Care Wastewater
国家哲学社会科学文献中心版权所有