首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Articulation constrained learning with application to speech emotion recognition
  • 本地全文:下载
  • 作者:Mohit Shah ; Ming Tu ; Visar Berisha
  • 期刊名称:EURASIP Journal on Audio, Speech, and Music Processing
  • 印刷版ISSN:1687-4714
  • 电子版ISSN:1687-4722
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-17
  • DOI:10.1186/s13636-019-0157-9
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Speech emotion recognition methods combining articulatory information with acoustic features have been previously shown to improve recognition performance. Collection of articulatory data on a large scale may not be feasible in many scenarios, thus restricting the scope and applicability of such methods. In this paper, a discriminative learning method for emotion recognition using both articulatory and acoustic information is proposed. A traditional ℓ1-regularized logistic regression cost function is extended to include additional constraints that enforce the model to reconstruct articulatory data. This leads to sparse and interpretable representations jointly optimized for both tasks simultaneously. Furthermore, the model only requires articulatory features during training; only speech features are required for inference on out-of-sample data. Experiments are conducted to evaluate emotion recognition performance over vowels /AA/, /AE/, /IY/, /UW/ and complete utterances. Incorporating articulatory information is shown to significantly improve the performance for valence-based classification. Results obtained for within-corpus and cross-corpus categorical emotion recognition indicate that the proposed method is more effective at distinguishing happiness from other emotions.
  • 关键词:Emotion recognition; Articulation; Constrained optimization; Cross-corpus
国家哲学社会科学文献中心版权所有