首页    期刊浏览 2025年06月09日 星期一
登录注册

文章基本信息

  • 标题:A deep learning framework for predicting cyber attacks rates
  • 本地全文:下载
  • 作者:Xing Fang ; Maochao Xu ; Shouhuai Xu
  • 期刊名称:EURASIP Journal on Information Security
  • 印刷版ISSN:1687-4161
  • 电子版ISSN:1687-417X
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-11
  • DOI:10.1186/s13635-019-0090-6
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Like how useful weather forecasting is, the capability of forecasting or predicting cyber threats can never be overestimated. Previous investigations show that cyber attack data exhibits interesting phenomena, such as long-range dependence and high nonlinearity, which impose a particular challenge on modeling and predicting cyber attack rates. Deviating from the statistical approach that is utilized in the literature, in this paper we develop a deep learning framework by utilizing the bi-directional recurrent neural networks with long short-term memory, dubbed BRNN-LSTM. Empirical study shows that BRNN-LSTM achieves a significantly higher prediction accuracy when compared with the statistical approach.
  • 关键词:ARIMA; GARCH; RNN; Hybrid models; LSTM; Deep learning; BRNN-LSTM
国家哲学社会科学文献中心版权所有