首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Type-aware Convolutional Neural Networks for Slot Filling
  • 本地全文:下载
  • 作者:Heike Adel ; Hinrich Schuetze
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2019
  • 卷号:66
  • 页码:297-339
  • 出版社:American Association of Artificial
  • 摘要:The slot filling task aims at extracting answers for queries about entities from text, such as “Who founded Apple”. In this paper, we focus on the relation classification component of a slot filling system. We propose type-aware convolutional neural networks to benefit from the mutual dependencies between entity and relation classification. In particular, we explore different ways of integrating the named entity types of the relation arguments into a neural network for relation classification, including a joint training and a structured prediction approach. To the best of our knowledge, this is the first study on type-aware neural networks for slot filling. The type-aware models lead to the best results of our slot filling pipeline. Joint training performs comparable to structured prediction. To understand the impact of the different components of the slot filling pipeline, we perform a recall analysis, a manual error analysis and several ablation studies. Such analyses are of particular importance to other slot filling researchers since the official slot filling evaluations only assess pipeline outputs. The analyses show that especially coreference resolution and our convolutional neural networks have a large positive impact on the final performance of the slot filling pipeline. The presented models, the source code of our system as well as our coreference resource is publicy available.
  • 其他摘要:The slot filling task aims at extracting answers for queries about entities from text, such as "Who founded Apple". In this paper, we focus on the relation classification component of a slot filling system. We propose type-aware convolutional neural networks to benefit from the mutual dependencies between entity and relation classification. In particular, we explore different ways of integrating the named entity types of the relation arguments into a neural network for relation classification, including a joint training and a structured prediction approach. To the best of our knowledge, this is the first study on type-aware neural networks for slot filling. The type-aware models lead to the best results of our slot filling pipeline. Joint training performs comparable to structured prediction. To understand the impact of the different components of the slot filling pipeline, we perform a recall analysis, a manual error analysis and several ablation studies. Such analyses are of particular importance to other slot filling researchers since the official slot filling evaluations only assess pipeline outputs. The analyses show that especially coreference resolution and our convolutional neural networks have a large positive impact on the final performance of the slot filling pipeline. The presented models, the source code of our system as well as our coreference resource is publicly available.
  • 关键词:natural language;neural networks;information extraction
  • 其他关键词:natural language;neural networks;information extraction
国家哲学社会科学文献中心版权所有