首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Multi-fidelity Gaussian Process Bandit Optimisation
  • 本地全文:下载
  • 作者:Kirthevasan Kandasamy ; Gautam Dasarathy ; Junier Oliva
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2019
  • 卷号:66
  • 页码:151-196
  • 出版社:American Association of Artificial
  • 摘要:In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function f. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to f may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of f in a small but promising region and speedily identify the optimum. We formalise this task as a multi-fidelity bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour and achieves better bounds on the regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.
  • 其他摘要:In many scientific and engineering applications, we are tasked with the maximisation of an expensive to evaluate black box function f. Traditional settings for this problem assume just the availability of this single function. However, in many cases, cheap approximations to f may be obtainable. For example, the expensive real world behaviour of a robot can be approximated by a cheap computer simulation. We can use these approximations to eliminate low function value regions cheaply and use the expensive evaluations of f in a small but promising region and speedily identify the optimum. We formalise this task as a multi-fidelity bandit problem where the target function and its approximations are sampled from a Gaussian process. We develop MF-GP-UCB, a novel method based on upper confidence bound techniques. In our theoretical analysis we demonstrate that it exhibits precisely the above behaviour and achieves better bounds on the regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB outperforms such naive strategies and other multi-fidelity methods on several synthetic and real experiments.
  • 关键词:machine learning;bandits;Bayesian optimization
  • 其他关键词:machine learning;bandits;Bayesian optimization
国家哲学社会科学文献中心版权所有