摘要:The interaction between prey and predator is one of the most fundamental processes in ecology. Discrete-time models are frequently used for describing the dynamics of predator and prey interaction with non-overlapping generations, such that a new generation replaces the old at regular time intervals. Keeping in view the dynamical consistency for continuous models, a nonstandard finite difference scheme is proposed for a class of predator–prey systems with Holling type-III functional response. Positivity, boundedness, and persistence of solutions are investigated. Analysis of existence of equilibria and their stability is carried out. It is proved that a continuous system undergoes a Hopf bifurcation at its interior equilibrium, whereas the discrete-time version undergoes a Neimark–Sacker bifurcation at its interior fixed point. A numerical simulation is provided to strengthen our theoretical discussion.