首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Variance-constrained resilient H ∞ $H_{\infty }$ state estimation for time-varying neural networks with randomly varying nonlinearities and missing measurements
  • 本地全文:下载
  • 作者:Yan Gao ; Jun Hu ; Dongyan Chen
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-23
  • DOI:10.1186/s13662-019-2298-7
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper addresses the resilient $H_{\infty }$ state estimation problem under variance constraint for discrete uncertain time-varying recurrent neural networks with randomly varying nonlinearities and missing measurements. The phenomena of missing measurements and randomly varying nonlinearities are described by introducing some Bernoulli distributed random variables, in which the occurrence probabilities are known a priori. Besides, the multiplicative noise is employed to characterize the estimator gain perturbation. Our main purpose is to design a time-varying state estimator such that, for all missing measurements, randomly varying nonlinearities and estimator gain perturbation, both the estimation error variance constraint and the prescribed $H_{\infty }$ performance requirement are met simultaneously by providing some sufficient criteria. Finally, the feasibility of the proposed variance-constrained resilient $H_{\infty }$ state estimation method is verified by some simulations.
  • 关键词:Time-varying neural networks;Resilient state estimation;Randomly varying nonlinearities;Missing measurements;H ∞ $H_{\infty }$ performance;Variance constraint
国家哲学社会科学文献中心版权所有