首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Asymptotically almost periodic mild solutions to a class of Weyl-like fractional difference equations
  • 本地全文:下载
  • 作者:Junfei Cao ; Bessem Samet ; Yong Zhou
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-33
  • DOI:10.1186/s13662-019-2316-9
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper is concentrated on a class of difference equations with a Weyl-like fractional difference in a Banach space X forms like $$ \triangle ^{\alpha }x(n)=Ax(n+1)+F\bigl(n, x(n)\bigr), \quad n\in \mathbb{Z}, $$ where $\alpha \in (0, 1)$ , the operator A generates a $C_($ -semigroup on X, $\triangle ^{\alpha }$ denotes the Weyl-like fractional difference operator, $F(n, x): \mathbb{Z}\times X\rightarrow X$ is a nonlinear function. Some existence theorems for asymptotically almost periodic mild solutions to this system are obtained with the nonlinear perturbation F being of Lipschitz type or non-Lipschitz type. The results are a consequence of applications of the Banach contraction mapping theory, the Leray–Schauder alternative theorem, and Matkowski’s fixed point theorem. As an application, an example is provided to show the feasibility of the theoretical results.
  • 关键词:39A14;34D05;Asymptotically almost periodic sequence;Fractional difference equation;Fixed point theorem;Leray;Schauder alternative theorem
国家哲学社会科学文献中心版权所有