摘要:Virtual reality (VR) and augmented reality (AR) are two novel graphics immersive techniques (GIT) that, in the last decade, have been attracting the attention of many researchers, especially in psychological research. VR can provide 3D real-life synthetic environments in which controllers allow human interaction. AR overlays synthetic elements to the real world and the human gaze to target allow hand gesture to act with synthetic elements. Both techniques are providing more ecologically environments than traditional methods, and most of the previous researches, on one side, have more focused on the use of VR for treatment and assessment showing positive effectiveness results. On the other, AR has been proving for the treatment of specific disorders but there are no studies that investigated the feasibility and effectiveness of augmented reality in the neuropsychological assessment. Starting from these premises, the present study aimed to compare the performance and sense of presence using both techniques during an ecological task, such as cooking. The study included 50 cognitively healthy subjects. The cooking task consisted of 4 levels that increased in difficulty. As the level increased, additional activities appeared. The order of presentation of each exposure condition (AR and VR) was counterbalanced for each participant. The virtual reality-cooking task has been performed through “HTC/VIVE” and augmented reality through “Microsoft HoloLens”. Furthermore, the study recorded and compared the psychophysiological changes (heart rate and skin conductance response) during the cooking task in both conditions. To measure the sense of presence occurring during the two exposure conditions, subjects completed the SUSQ and the ITC-SOPI immediately after each condition. The behavioral results showed that times are always lower in VR than in AR, increasing constantly in accordance with the difficulty of the tasks. Regarding physiological responses, the findings showed that AR condition produced more individual excitement and activation than VR. Finally, VR was able to produce higher levels of sense of presence than AR condition. The overall results support that VR currently represents the GIT with greater usability and feasibility compared to AR, probably due to the differences in the human-computer interaction between the two techniques.